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The article considers the problem of brittle failure with the torsion of a cylindrical bar whose cross
section is a circle of radius R, with an arbitrary number of radial divisions of length /. The problem is
reduced to a form convenient for digital-computer computation. On the basis of the Griffith criterion, a
determination is made of the value of the external load, corresponding to the start of the growth of a crack,
as a function of the depth of the initial notches and their number.

1. Let us consider the problem of the torsion of a round bar, having the transverse cross section
depicted on Fig. 1. We shall seek the solution by the methods of the theory of functions of a complex vari-
able [1], using the conformal mapping of a circle with notches (Fig. 1) on the interior of a unit circle (Fig.
2).

In accordance with [1], the complex function of f(¢) in the transformed region has the form
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where 7y is a unit circle; o is a point of the contour; w(f) is the mapping function which, in the case under
consideration, has the form [2]
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With mapping, the apexes of a crack, Ay, go over into the points of the unit circle qx
lag| =1, argax =2k —1)n/n
The points of intersection of the circle with the notches go over into the points
[bx]=1, [&' [=1, argby, by = +2ndarc cos(1 L )+ 2k —1)n/n

The points bg, bk' aré the branch points of the function z = 4(¢). The single-valued branch of this
function is selected from the condition for congruence of the boundaries. Writing o and ¢ in the form ¢ =
elf, ¢ = rel¥, and taking into account that, in the segments |by, bi'|

Fig. 1 ' Fig. 2
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didal we obtain the complex function of the torsion f(rel?) in the form
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02310 \\& To solve the torsion problem, it is necessary to calculate the rigidity
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where p is the shear modulus; J is the polar moment of inertia of the area
of a transverse cross section with respect to the center (in the given case,
the polar moment of inertia J = 'rrR“/Z), and the value of Dy is calculated us-
ing the formula (1]

Fig. 3
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which, taking account of relationships (1.3), (1.4), can be written in the form
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In Eq. (1.7) we make the replacement of variables 6; = 6+2(k—1)7/n, ¢, = o +2(k —1)7/n and we set
r =1 [passing to the limit under the double integral sign in Eq. (1.7) is admitted].

After certain transformations, Eq. (1.7) can be written in the form
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2. Let us consider the process of the propagation of cracks from the point of view of the energy con-
cepts developed by Griffith [3].

Let all the notches receive small virtual increments 67, in their own planes (it is shown in [4] that,
under conditions of torsion, a crack does not change its direction). Then, the equation of the energy balance
existing with the growth of a crack is written in the form

W/l G (2.1)

Here W is the elastic energy accumulated inside a bar of unit length; G is a constant of the material,
having the sense of the specific surface energy.

The elastic energy accumulated inside a bar of unit length with torsion is calculated using the formula
(1]
W= M2/2D (2.2)
where M is the principal moment of the external stresses.

Substituting Eq. (2.2) into (2.1) and taking account of Eg. (1.5), we obtain
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Using Eq. (2.3) we can determine the value of the critical external load M* corresponding to the start
of the growth of a crack from a notch. It can be seen from Eq. (1.7) that M* will be a function of the depth
of the initial notches and their number n
M* = V2D (G / (—aD / a1y~ (2.4)

The function under the integral sign in both the first and second integrals has a singularity (in the first
integral with t = C, and in the second with t = u).

Expression (1.8) was calculated using the formula
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where e = 0.0001. In this case, the error does not exceed 0.0012. The integrals were calculated using the
Simpson formula.

The integral (1.8) was calculated in a Mir-1 digital computer. The dependence of the dimensionless
critical load a7 */ (Guk®'* on the relative depth of the original notches /, and on their number is shown on
Fig. 3. The curves designated by the numbers 1, 2, 3, and 4 correspond to a number of notches n =2, 4, 6,
and 7.
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